
## $\beta$ -SUBSTITUTED 2-VINYLIMIDAZO[1,2-a]PYRIDINES FROM UNSATURATED KETONES

N. O. Saldabol, L. L. Zeligman, and S. A. Giller

2-Substituted and 2,3-disubstituted imidazo[1,2-a]pyridines can be obtained by heating alkyl aryl ketones, iodine, and 2-aminopyridine in an organic solvent with subsequent treatment of the resulting  $\beta$ -ketoalkylpyridinium iodides with sodium bicarbonate [1].

UDC 547.83'781

In the present communication, we demonstrate that the use of  $\alpha$ ,  $\beta$ -unsaturated alkyl ketones in this reaction gives the previously undescribed 2-[ $\beta$ -aryl(hetaryl)vinyl[imidazo]1,2-a]pyridines.



The compounds (I-III) obtained by this method are identical to samples prepared by the Chichibabin method [2] by reaction of the appropriate unsaturated halo ketones [3, 4] with 2-aminopyridine. The presence of absorption bands at 700 cm<sup>-1</sup> in the IR spectra of III and IV indicates that they have the cis conformation. The PMR spectrum of III also confirms the assumed structure.

## EXPERIMENTAL

A 10-mmole sample of an  $\alpha$ ,  $\beta$ -unsaturated methyl ketone, 10 mmole of iodine, and 20 mmole of 2aminopyridine were stirred in 100 ml of benzene for 3 h. The benzene solution was then decanted, and the residual mass was heated and treated with 30 g of NaHCO<sub>3</sub> and 500 ml of water. The reaction products were removed by filtration and recrystallized from dimethylformamide (I, II, and IV) or alcohol (III) (see Table 1).

| Com-<br>pound | R         | R'  | Obtained by the<br>new method<br>mp, °C  yield, % |      | Obtained by the<br>Chichibabin meth-<br>od<br>mp, °C   yield, % |    | Empirical<br>formula                                           |
|---------------|-----------|-----|---------------------------------------------------|------|-----------------------------------------------------------------|----|----------------------------------------------------------------|
| I             | C4H2NO3b  | Cl  | 212—213                                           | 80   | 214—215                                                         | 33 | C <sub>13</sub> H <sub>8</sub> ClN <sub>3</sub> O <sub>3</sub> |
| II            | C4H2NO3b  | CH₃ | 186—188                                           | 45   | 189—191                                                         | 49 | C <sub>14</sub> H <sub>11</sub> N <sub>3</sub> O <sub>3</sub>  |
| III           | C6H5      | H   | 152—154                                           | 23 c | 152—154                                                         | 46 | C <sub>15</sub> H <sub>12</sub> N <sub>2</sub>                 |
| IV            | 4-O2NC6H4 | H   | 250—252                                           | 49   | —                                                               | —  | C <sub>15</sub> H <sub>11</sub> N <sub>3</sub> O <sub>2</sub>  |

TABLE 1. Characteristics of the Compounds Obtained<sup>a</sup>

<sup>a</sup>Satisfactory analytical data were obtained for all of the compounds. <sup>b</sup>5-Nitro-2-furyl. <sup>C</sup>Extracted from the reaction mixture with hot n-octane.

Institute of Organic Synthesis, Academy of Sciences of the Latvian SSR, Riga. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 1, p. 137, January, 1973. Original article submitted May 29, 1972.

© 1975 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

## LITERATURE CITED

- 1. N. O. Saldabol, L. L. Zeligman, and S. A. Giller, Khim. Geterotsikl. Soedin., 860 (1971).
- A. E. Chichibabin, Zh. Russk. Khim. Obshchestva, 58, 1159 (1926). 2.
- 3.
- N. O. Saldabol and V. V. Krylova, Khim. Geterotsikl. Soedin., 555 (1969). P. L. Soutwick, L. A. Pursglove, and P. Numerof, J. Am. Chem. Soc., 72, 1604 (1950). 4.